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STATES OF EQUILIBRIUM AND SECONDARY LOSS OF STABILITY

OF A STRAIGHT ROD LOADED BY AN AXIAL FORCE

UDC 539.3S. V. Levyakov

A general analytical solution of the problem of postcritical deformation of a straight incom-
pressible rod loaded by an axial force is given. The bending of the rod is studied under various
boundary conditions, and new states of equilibrium the occurrence of which is due to the sec-
ondary loss of stability are found. It is shown that, for simply supported and clamped rods, the
solution bifurcates when the ends meet.

Introduction. Korobeinikov [1] showed that the secondary buckling of a simply supported rod occurs
when the compressive load exceeds the Euler critical load. Kuznetsov and Levyakov [2, 3] studied the non-
linear deformation and stability of simply supported and clamped rods by a numerical method. They found
bifurcation points and solution branches that were not known previously. It is, therefore, of interest to study
analytically the postcritical behavior of the rod.

It is well known that the exact solution of the problem of strong plane bending of an incompressible
elastic rod loaded by point forces and couples at its ends is written in terms of the elliptic integrals [4] or the
Jacobi elliptic functions [5]. Love [5] considered the problem of determining the plane states of equilibrium of
a rod loaded by end forces (elastica problem) and gave the general analytical solution of the problem under
the assumption that the line of action of the resultant of forces is fixed. However, in using this solution to
study the postcritical deformation of compressed straight rods, some difficulties arise, since in the cases of
rod bending where a support reaction occurs, the direction of the resulting force acting on the rod end is
unknown. Moreover, this solution fails to describe the states of equilibrium connected with the secondary loss
of stability of rods, which were studied numerically in [2, 3].

In the present paper, the solution proposed in [5] is generalized to the case of nonsymmetric deformation
of the rod, which enables one to obtain the results of [4, 5] and describe the solution branches found in [2, 3].
The problem of determining the singular points of the nonlinear solutions obtained is formulated.

1. General Solution of the Problem of Postcritical Deformation of a Compressed Rod. We
consider the postcritical flexural deformation of an initially straight incompressible rod of length l and constant
flexural rigidity EI compressed by the axial force P . The Cartesian coordinate system xOy is chosen in such
a manner that the abscissa axis coincides with the axis of the undeformed straight rod and the coordinate
origin is located at its left end. We denote the angle between the tangent to the elastic line and the Ox axis
by β. The equation of equilibrium has the form

EI
d2β

ds2
+ P sinβ −R cosβ = 0, (1.1)

where s is the arc length of the rod (0 6 s 6 l), R is the support reaction acting in the direction of the Oy
axis, and the line of action of the force P coincides with the Ox axis. We assume that, in addition to the
boundary conditions, the solution of Eq. (1.1) satisfies the relation
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l∫
0

sinβ ds = 0, (1.2)

which is the condition of equal ordinates of the rod ends.
To integrate Eq. (1.1), we simplify it by expressing the end forces P and R in terms of the resultant

force H:

P = H cosα, R = H sinα. (1.3)

Here α is the angle between the direction of the resulting force H and the Ox axis. Generally, the angle α is
an unknown quantity. Substituting (1.3) into Eq. (1.1), we find its first integral

EI

2H

(dβ
ds

)2

− cos(β − α) = C, (1.4)

where C is an integration constant. We set

C = 2k2 − 1, (1.5)

where k is a parameter referred to as the modulus of elliptic integral. To construct a solution, we introduce
the elliptic functions of modulus k and argument u [6]

u =

√
H

EI
s+ u1, k snu = sin

β − α
2

, u1 6 u 6 u2, (1.6)

where the parameters u1 and u2 are determined from the boundary conditions at the rod ends and depend on
the modulus k.

With the use of (1.5) and (1.6), we reduce Eq. (1.4) to the form

β′ = 2k cnu. (1.7)

Hereafter, the prime denotes differentiation with respect to the variable u. The solution of Eq. (1.7) has the
form

β = θ + α, θ = 2 arcsin (k snu). (1.8)

Integration of the relations dx/ds and dy/ds with allowance for (1.6) and (1.8) yields the parametric
equation of elastica

x = ξ cosα− η sinα, y = ξ sinα+ η cosα,
(1.9)

ξ =

√
EI

H
[−u+ u1 + 2(E amu− E amu1)], η =

√
EI

H
2k(cnu1 − cnu),

where E amu =

u∫
0

dn2u du is the incomplete elliptic integral of the second kind. The first two relations in

(1.9) imply that the coordinate system of the rod xOy is rotated relative to the coordinate system of the
elastica ξOη through the angle α (the Oξ axis coincides with the axis of elastica compression [5]).

Integrating (1.2) with allowance for (1.6) and (1.8), we obtain the condition

2k(cnu1 − cnu2) cosα+ [u1 − u2 − 2(E amu1 − E amu2)] sinα = 0. (1.10)

Construction of a solution governing the bending of the rod for a given modulus k reduces to deter-
mination of three parameters u1, u2, and α from two boundary conditions at the rod ends and Eq. (1.10).
The configuration of the rod is determined by expressions (1.9) where the resulting force is calculated by the
formula H = (u2− u1)2EI/l2, which follows from the first relation (1.6) for s = l. Combining (1.3) and (1.6),
we find the relation between the load P and the above-indicated parameters

P = (u2 − u1)2 cosα
EI

l2
. (1.11)
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Fig. 1 Fig. 2

2. Analysis of Solutions Under Different Boundary Conditions for Support of the Rod.
Using relations given in Sec. 1, we consider the postcritical bending of the rod under different boundary
conditions at its ends.

Case 2.1. Simply Supported Ends. By virtue of (1.7), the conditions for vanishing of the bending
moments at s = 0, l are written in the form cnu1 = 0 and cnu2 = 0, respectively. With allowance for the
periodicity of the elliptic function, we obtain

u1 = K, u2 = (1 + 2n)K (n = ±1,±2, . . .), (2.1)

where K is the complete elliptic integral of the first kind. By virtue of (2.1), condition (1.10) becomes

(K − 2E amK) sinα = 0, (2.2)

where E amK is the complete elliptic integral of the second kind. Condition (2.2) implies two types of solution,
which are shown in Fig. 1 (see also Fig. 1 in [2]), where w is the mid-span deflection.

The first type of solution, which corresponds to the condition sinα = 0, is well known and describes
the deformation of the rod after buckling in n semiwaves for 0 6 k < 1. In this case, the values of α = 0 and
α = π correspond to different solution branches, namely, the branches B1C and B2B1B3 refer to the value of
α = 0, and the branches B6A and B4B6B5 to the value of α = π. To distinguish between the branches B1C

and B6A, which refer to rectilinear configurations of the rod, we separate them in Fig. 1.
The first multiplier in (2.2) vanishes for k∗ = 0.908908557549, K∗ = 2.321049732530, and E amK∗ =

1.160524866265 and its vanishing is a condition under which the rod ends coincide [5]. In this case, the
parameter α is arbitrary. The solution of the second type [see formula (1.8)] has the form β = 2 arcsin(k∗ snu)+
α and describes the rotation of the deformed rod as a rigid body about the point of coincidence of its ends
(closed branches B2B4B2 and B3B5B3).

Case 2.2. One End is Simply Supported and the Other is Clamped. The boundary conditions have the
form

β′(u1) = 0, β(u2) = 0. (2.3)

With allowance for (1.7), the first relation (2.3) is satisfied if

u1 = K. (2.4)
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Substituting (1.8) into the second boundary condition (2.3), we express the angle α in the form α =
−2 arcsin(k snu2). Then,

sinα = −2k snu2 dnu2, cosα = 1− 2k2 sn2 u2. (2.5)

Inserting (2.4) and (2.5) into (1.10), we obtain the following transcendental equation for u2:

(1− 2k2 sn2 u2) cnu2 + [K − u2 − 2(E amK − E amu2)] snu2 dnu2 = 0. (2.6)

We note that a similar equation was derived in [4] with the use of geometrical considerations. The solutions
determined by the roots of Eq. (2.6) are known and describe the postcritical bending of the rod after its
rectilinear equilibrium configuration loses stability. New solution branches were not found.

Case 2.3. Both Ends are Clamped. To analyze the states of equilibrium, we use Fig. 2, which shows
the load P versus the change in distance between the rod ends v (see also Fig. 1 in [3]). We consider the
boundary conditions

β(u1) = 0, β(u2) = 0. (2.7)

Expressing sinα and cosα in terms of u1 and u2 with the use of relations (1.8) and (2.7) and substituting the
resulting expressions into (1.10), we arrive at the following system of transcendental equations for u1 and u2:

(cnu2 − cnu1)(1− 2k2 sn2 u1) + [u1 − u2 − 2(E amu1 − E amu2)] snu1 dnu1 = 0,
(2.8)

(cnu2 − cnu1)(1− 2k2 sn2 u2) + [u1 − u2 − 2(E amu1 − E amu2)] snu2 dnu2 = 0.

System (2.8) admits three types of solution.
The first type corresponds the case

α = 0, u1 = 0, u2 = 4Kn (n = ±1,±2, . . .), (2.9)

where 0 6 k < 1. This solution describes the symmetric postcritical configurations of the rod (branch B2B1B3

in Fig. 2).
The second type of solution of system (2.8) corresponds to the case where α 6= 0 and 0 6 k < 1

and describes the nonsymmetric postcritical configurations of the rod with the inflection point in the middle
section. In this case, the parameters u1 and u2 satisfy the relation u1 + u2 = 2(2n − 1)K (n = ±1,±2, . . .).
The branch B4L1L3B6L4L2B5 (Fig. 2), which describes the development of the second buckling mode of a
straight rod, corresponds to this type of solution.

The third type of solution of system (2.8) corresponds to the case where the rod ends coincide, i.e.,
when k = k∗. In this case, bearing in mind the periodicity of the elliptic function and using the expression
(1.8) and boundary condition (2.7), we obtain

α = −2 arcsin(k∗snu1), u2 = u1 + 4K∗n (n = ±1,±2, . . .), (2.10)

where u1 is an arbitrary quantity. The first relation in (2.10) implies that the angle α varies from −130.71◦ to
130.71◦. This type of solution is illustrated by the closed branch B2B4B5B3B2 (see Fig. 2). Figure 3 shows
configurations of the rod calculated for u1 = 0, K∗, 2K∗, and 3K∗ (curves 1–4, respectively). Curve 5 is the
trajectory of motion of the middle point of the rod upon deformation along the branch B2B4B5B3B2 (see
Fig. 2).

Case 2.4. One End of the Rod is Free and the Other is Clamped. The boundary conditions have the
form β′(u1) = 0 and β(u2) = 0. In this case, it is necessary to set α = 0 and ignore condition (1.10). With
allowance for (1.7) and (1.8), the boundary conditions become

cnu1 = 0, snu2 = 0. (2.11)

Relations (2.11) are satisfied for u1 = K and u2 = 2nK (n = ±1,±2, . . .). Solutions determined by these
values are known. New solutions were not found.

3. Determination of the Singular Points of the Solution of the Problem of Postcritical
Bending of a Rod. We formulate the problem of determining the singular points of the nonlinear solution
describing the postcritical deformation of the rod. Replacing β and R in (1.1) by β + ∆β and R + ∆R,
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Fig. 3

respectively, and retaining only terms linear in the perturbed-state parameters ∆β and ∆R, with allowance
for (1.3), (1.6), and (1.8), we obtain the equations

∆β′′ + (1− 2k2sn2 u)∆β = C3[(1− 2k2sn2 u) cosα− 2k snu dnu sinα], (3.1)

cosα

u2∫
u1

(1− 2k2 sn2 u)∆β du− 2k sinα

u2∫
u1

snu dnu∆β du = 0, (3.2)

where C3 = ∆R/H . We note that the differential equation similar to (3.1) was studied in [7] in a stability
analysis of a circular ring compressed by radial forces.

The general solution of Eq. (3.1) has the form

∆β = C1F1(u) + C2F2(u) + C3F3(u), (3.3)

where F1(u) = cnu, F2(u) = [E amu − (1 − k2)u] cnu − snu dnu, and F3(u) = cosα + ku cnu sinα (C1 and
C2 are arbitrary constants). The derivatives of the functions F1(u), F2(u), and F3(u) are given by

F ′1(u) = −snu dnu, F ′2(u) = (k2 − dn2 u) cnu− [E amu− (1− k2)u] snu dnu,
(3.4)

F ′3(u) = k(cnu− u snu dnu) sinα.

Substituting (3.3) into (3.2) and calculating the quadratures, we obtain the condition

C1J1 + C2J2 + C3J3 = 0, (3.5)

where

J1 = cosα dnu snu
∣∣∣u2

u1

+ k sinα cn2 u
∣∣∣u2

u1

,

J2 = cosα
[
E amu dnu snu+ (dn2 u− k2) cnu− (1− k2)u dnu snu

]u2

u1 (3.6)

+ k sinα
[
E amu cn2 u− dnu snu cnu+ (1− k2)u sn2 u

]u2

u1

,
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J3 = cos2 α(2E amu− u)
∣∣∣u2

u1

+ k sinα cosα(3 cnu+ dnu snu)
∣∣∣u2

u1

− sin2 α(E amu− u dn2 u)
∣∣∣u2

u1

.

Substituting the general solution (3.3) into the boundary conditions at the rod ends and using condition
(3.5), we obtain a system of three homogeneous equations for C1, C2, and C3. Thus, the problem of determining
the singular points of the solution reduces to finding the conditions under which the determinant of the system
vanishes. Let us consider some conditions for support of the rod ends.

Case 3.1. Simply Supported Rod. Using the boundary conditions ∆β′(u1) = 0 and ∆β′(u2) = 0 and
condition (3.5), with allowance for (2.1), (3.4), and (3.6), we obtain the system

C1 + [E amK − (1− k2)K]C2 = 0, C1 − (1 + 2n)[E amK − (1− k2)K]C2 = 0,
(3.7)

(dnK)C1 + dnK[E amK − (1− k2)K][(1 + 2n)(−1)n − 1]C2 + 2n(2E amK −K)C3 = 0,

which yields the characteristic equation

[E amK − (1− k2)K](2E amK −K) = 0. (3.8)

One can show that the first factor in (3.8) is always positive and the second factor vanishes for k = k∗, i.e.,
when the rod ends coincide (see Case 2.1). According to (1.11) and (2.1), the secondary loss of stability occurs
under the critical load (Pn)∗ = (2K∗n)2EI/l2.

Solving system (3.7) for k = k∗, we infer that C1 = 0, C2 = 0, and C3 is an arbitrary constant.
According to (3.3), the function that describes the perturbed state of the rod has the form ∆β = C3, i.e., the
buckling mode is rigid rotation of the deformed rod about the point where its ends meet. In Fig. 1, the points
B2, B3, B4, and B5 are bifurcation points of the solution which correspond to the case n = ±1.

Case 3.2. Clamped Rod. We study the bifurcation of a solution of the first type (see Case 2.3). Using
the boundary conditions ∆β(u1) = 0 and ∆β(u2) = 0 and relation (3.5), with allowance for (2.9), (3.3), and
(3.6), we obtain the system

C1 + C3 = 0, C1 + 4n[E amK − (1− k2)K]C2 + C3 = 0, (2E amK −K)C3 = 0. (3.9)

The condition of existence of nontrivial solutions of system (3.9) implies the above-considered charac-
teristic equation (3.8). Consequently, as in the simply supported case, a critical state of the bent rod with
clamped ends occurs when its ends meet (see curves 1 and 3 in Fig. 3). The critical states are shown by the
points B2 and B3 in Fig. 2 for n = ±1. It follows from (1.11) and (2.9) that the critical load for the secondary
loss of stability is (Pn)∗ = (4nK∗)2EI/l2.

Solving (3.9) for k = k∗, we find that C1 = −C3, C2 = 0, and C3 is an arbitrary constant. According
to (3.3), the buckling mode of the bent rod is described by the function

∆β = C3(1− cnu). (3.10)

Linearizing Eqs. (1.6), (1.8), (2.9), and (3.10) and, then, using them to integrate the relations dx̃/ds =
cos(β + ∆β) and dỹ/ds = sin(β + ∆β), we obtain the approximate formulas for the coordinates of the rod in
perturbed states

x̃ =
l

4nK∗

[
− u+ 2E amu+ 2k∗C3

(1
2

sn2 u+ cnu− 1
)]
,

(3.11)

ỹ =
l

4nK∗
[2k∗(1− cnu) + C3(−u+ 2E amu− dnu snu)], 0 6 u 6 4nK∗.

Figure 3 shows configurations of the rod (curves 6 and 7) calculated by formulas (3.11) for n = 1 and
C3 = ±0.2. These results show that the transition to a solution of the third type occurs at this bifurcation
point (see Case 2.3).

Solutions of the other two types can be studied numerically.
The solution considered in Case 2.3 has four bifurcation points B2, B3, B4, and B5 (see Fig. 2)

corresponding to the values of u1 = 0, K∗, 2K∗, and 3K∗, respectively. The critical load (Pn)∗ =
−(4nK∗)2(2k2

∗ − 1)EI/l2 refers to the points B4 and B5.
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An analysis of the solution describing the development of the second buckling mode of a straight rod (see
Case 2.3) shows that, in addition to the well-known bifurcation point B6, it contains the singular points L1 (L2)
and L3 (L4), which are limit points [3], and the above-considered bifurcation point B4 (B5). Using the bisection
method, we determined the critical loads P = 92.038346EI/l2 (k = 0.669523) and P = −60.838189EI/l2

(k = 0.908084) for the points L1 (L2) and L3 (L4), respectively.
A bending analysis of the rod one end of which is simply supported and the other end is clamped shows

that the limit points exist for k = 0.669523 and k = 0.908084.
For a cantilevered rod, singular points were not found.
Conclusions. The problem of postcritical bending of a straight elastic rod loaded by an axial force

has been considered. An analytical solution of the problem that generalizes the known elastica solution
and describes nonsymmetric equilibrium configurations including those associated with the secondary loss of
stability of rods has been given. The problem of determining the singular points of the solution obtained
has been formulated and solved in the general form. To answer the questions concerning the type of singular
points and the stability of the states of equilibrium, further investigations are required.
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